OPEN SOURCE CRYPTOGRAPHY
3

MAKE |'T
MEMORY SAFE

Adapting curl ¢
to use Rustls s
RUSTLS

Hi, I'm
J.C. JONES

Cryptography
Engineer & SRE @

nternet Security

Research Group

(Let's Encrypt)
BUT NOT HERE ON 2

THEIR BEHALF 'i

IC® INSUFFICIENT.COFFEE
LETSENCRYPT.ORG

?@r

‘“AA‘

HTTPS://INSUFFICIENT.COFFEE/SOCIAL/

“Oh no”

inealth

COVID-19 Test

P
$/

OPERATING SYSTEMS

=
O

=
O

GENESIS OF
RUSTLS-FFI

TLS IS
ALWAYS ON
A TRUST
BOUNDARY

PROSSIMO

memorysatety.org

WHY CURL

Ubiquitous

Routinely handles
untrusted
network data

Mostly written in

C

WHY RUST /
RUSTLS?

* OpenSSL has no plans
to become memory-
safe

* Rustls is performant and
compatible

* ring for crypto
primitives

DESIGNING RUSTLS-FFI

REMINDER TO SELF: NOT
A RUST WORKSHORP...

KEEPING IT
GENERIC

-l : Foreign Function

nterface
C linking and headers

Two immediate
consumers:

libcurl’s vits interface

Apache’s mod_tls

JAPACHE oo

HTTP SERVER PROJECT Apache HTT

Apache > HTTP Server > Documentation > Version 2.4 > Modules

Apache Module mod tis

Available Languages: en

Description: TLS v1.2 and v1.3 implemented in
memory-safe Rust via the rustis
library

Status: Experimental

Module Identifier: tls_module

sSource Flle: mod_tis.c

Compatibllity: Available in version 2.4.52 and later

Summary

mod_tls is an alternative to mod ss1 for providing https to
a server. It's feature set is a subset, described in more
detail below. It can be used as a companion to mod ssl,
e.g. both modules can be loaded at the same time.

mod _tIs, being written in C, used the Rust implementation
of TLS named rustis via its C interface rustis-ffl. This gives
memory safe cryptography and protocol handling at
comparable performance.

It can be configured for frontend and backend
connections. The configuration directive have been kept
mostly similar to mod ss1 ones.

rustls_client_config_builder {
. // Turn a *rustls_client_config_builder
DO N T PAN ‘ C // (read-only).

[no_manglel]

1b extern "C" fn rustls_client_config_bu
builder: *mut rustls_client_config_bu

-> *const rustls_client_config {
ffi_panic_boundary|! {

Exception handling IS always let builder: Box<ClientConfigBuil
N . let config = builder.base.with_cu
a probiem crossing let mut config = match builder.ce
languages Some(r) => config.with_client
None => config.with_no_client

. . };
Panics are undefined config.alpn_protocols = builder.a
across the FFl boundary config.enable_sni = builder.enabl

ArcCastPtr::to_const_ptr(config)

Rustls panics are from
memory allocation failures | _ , ,
// "Free" a client_config_builder withou
. // Normally builders are built into rust
It we catch a panic, can we // and may not be free'd or otherwise us

discard the TLS connection // Use free only when the building of a
// was created.

and continue with others? [no_manglel
1b extern "C" fn rustls_client_config_bu
ffi_panic_boundary)! {
BoxCastPtr::to box(confiq):

AVOIDING SYMBOL
AND LOGGING
COLLISTONS

Rustc codgen “metadata”
option controls symbol
mangling

Rust logging relies on a
singleton

Allows linking multiple
rust libs

st: all test-rust
./tests/verify-static-libraries.py
./tests/client-server.py ./target/client ./

st-rust:
${CARGO} test

rget:
mkdir -p $@

c/rustls.h: src/*.rs cbindgen.toml
cbindgen --lang C > $@

rget/$(PROFILE)/librustls_ffi.a: src/*.rs Car
RUSTFLAGS="-C metadata=rustls-ffi" ${CARGO}

rget/%.o0: tests/%.c tests/common.h | target
$(CC) -0 $@ —c $< $(CFLAGS)

rget/client: target/client.o target/common.o
$(CC) -0 $@ $~ $(LDFLAGS)

rget/server: target/server.o target/common.o
$(CC) -0 $@ $~ $(LDFLAGS)

stall: target/$(PROFILE)/librustls_ffi.a
mkdir -p $(DESTDIR)/1lib
install target/$(PROFILE)/1librustls_ffi.a ¢
mkdir -p $(DESTDIR)/include
install src/rustls.h $(DESTDIR)/include/

USING RUSTLS-FFI FOR
TLS

THE SUPER ABBREVIATED VERSION

REPRESENTING
THE TLS STATE
MACHINE

OBJECT ORIENTED C

"INTO" PATTERN

"INTO" PATTERN (SERVERS)

rustls acceptor it
\
ACCEPT
~—_ B mut
o rustls_accepted -

INTO(

rustls connection

ACCEPTER,
ACCEPTED,
CONNECTION

Allow nonblocking I/O for
server connection setups

Struct rustls::server:Acceptor & [-][src]

pub struct Acceptor { /*x fields omitted */ }

(-] Handle on a server-side connection before configuration is
available.

The Acceptor allows the caller to provide a ServerConfig
based on the ClientHello of the incoming connection.

Implementations

[-] impl Acceptor [src]
[+] pub fn new() -> Result<Self, Error> [src]
[+] pub fn wants_read(&self) -> bool [src]

[+] pub fn read tls(&mut self, rd: &mut dyn [src]
Read) -> Result<usize, Error>

[l pub fn accept(&mut self) -> [src]
Result<Option<Accepted>, Error>

Check if a ClientHello message has been received.

Returns an error if the ClientHello message is invalid or if
the acceptor has already yielded an Accepted. Returns

Ok (None) if no complete ClientHello has been received
yet.

Auto Trait Implementations

impl !RefUnwindSafe for Acceptor

"INTO" PATTERN (CLIENTS)

ke,

1/ O

Design of Rustls is
agnostic to whether

you use Rust's
blocking or async |/O.

£
3
15

C
\

o

o

FOOTGUN: UNINITIALIZED MEMORY

WHAT WOULD W

D O

DI FF

ERENTLY?

Top request: Richer error reporting

Breaking APl change

NEXT STEPS

Advocate for more OS pickup

Leverage Rust in the Linux Kernel to pave
the way

Some small things need addressing to
remove “experimental” markings from curl

EARLY OS ADOPTION

W@Ifi

https://wolfi.dev/

ISRG / PROSSIMO PLANS

Pluggable crypto backends, so you can choose

alternatives to ring
libcrux :)

Mutual authentication / Client certificates
Rustls - OpenSSL C APl compatibility layer

And more:

https://www.memorysafety.org/
initiative/rustls/rustls-work-plan/

RUSTLS CAN REPLACE
OPENSSL

JIAALGAGAL A GA A BALSALRALSALBA B4,
[IT'S DANGEROUS TO GO ?

(4

"". WITHOUT SAFETY. TAKE THIS.

-
'j | '
o
,.l‘\,,_/"
f{.« /'J_/ ‘
4
!J(‘r"}
r 4
r,a"l ff’"
&

i
%

; ;
FESRARSRARS RESRSRSRSRSIE

This has been a lot of words from

J.C. JONES

Cryptography
Engineer & SRE @

nternet Security

Research Group
(Let’s Encrypt)

INSUFFICIENT.COFFEE
LETSENCRYPT.ORG =

-

JC@

Sl .

HTTPS: //INSUFFICIENT-COFFEE/SOCIAL/

